The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subconvexity and Equidistribution of Heegner Points in the Level Aspect

Let q be a prime and −D < −4 be an odd fundamental discriminant such that q splits in Q( √ −D). For f a weight zero Hecke-Maass newform of level q and Θχ the weight one theta series of level D corresponding to an ideal class group character χ of Q( √ −D), we establish a hybrid subconvexity bound for L(f×Θχ, s) at s = 1/2 when q D for 0 < η < 1. With this circle of ideas, we show that the Heegne...

متن کامل

Weyl-type Hybrid Subconvexity Bounds for Twisted L-functions and Heegner Points on Shrinking Sets

Let q be odd and squarefree, and let χq be the quadratic Dirichlet character of conductor q. Let uj be a Hecke-Maass cusp form on Γ0(q) with spectral parameter tj . By an extension of work of Conrey and Iwaniec, we show L(uj ×χq, 1/2) ≪ε (q(1 + |tj |))1/3+ε, uniformly in both q and tj . A similar bound holds for twists of a holomorphic Hecke cusp form of large weight k. Furthermore, we show tha...

متن کامل

Equidistribution of Heegner points and the partition function

Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n)with an effective error termwhich is O(n−( 1 2+δ)) for some δ > 0.We then use this asymptotic formula to sharpen the classical bounds of Hardy an...

متن کامل

Heegner points, Stark-Heegner points, and values of L-series

Elliptic curves over Q are equipped with a systematic collection of Heegner points arising from the theory of complex multiplication and defined over abelian extensions of imaginary quadratic fields. These points are the key to the most decisive progress in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of analytic rank ≤ 1...

متن کامل

Equidistribution of Heegner Points and Ternary Quadratic Forms

We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2004

ISSN: 0003-486X

DOI: 10.4007/annals.2004.160.185